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ABSTRACT

BACKGROUND: Converging evidence implicates abnormal thalamocortical interactions in the pathophysiology of
schizophrenia. This evidence includes consistent findings of increased resting-state functional connectivity of the
thalamus with somatosensory and motor cortex during wake and reduced spindle activity during sleep. We
hypothesized that these abnormalities would be correlated, reflecting a common mechanism: reduced inhibition of
thalamocortical neurons by the thalamic reticular nucleus (TRN). The TRN is the major inhibitory nucleus of the
thalamus and is abnormal in schizophrenia. Reduced TRN inhibition would be expected to lead to increased and
less filtered thalamic relay of sensory and motor information to the cortex during wake and reduced burst firing
necessary for spindle initiation during sleep.

METHODS: Overnight polysomnography and resting-state functional connectivity magnetic resonance imaging were
performed in 26 outpatients with schizophrenia and 30 demographically matched healthy individuals. We examined
the relations of sleep spindle density during stage 2 non-rapid eye movement sleep with connectivity of the thalamus
to the cortex during wakeful rest.

RESULTS: As in prior studies, patients with schizophrenia exhibited increased functional connectivity of the thalamus
with bilateral somatosensory and motor cortex and reduced sleep spindle density. Spindle density inversely corre-
lated with thalamocortical connectivity, including in somotosensory and motor cortex, regardless of diagnosis.
CONCLUSIONS: These findings link two biomarkers of schizophrenia—the sleep spindle density deficit and
abnormally increased thalamocortical functional connectivity —and point to deficient TRN inhibition as a plausible
mechanism. If TRN-mediated thalamocortical dysfunction increases risk for schizophrenia and contributes to its
manifestations, understanding its mechanism could guide the development of targeted interventions.
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Converging lines of evidence implicate abnormal communi-
cation of the thalamus with the cortex in the pathophysiology
of schizophrenia. Resting-state functional connectivity mag-
netic resonance imaging (rs-fcMRI) studies, for example,
consistently report increased thalamic connectivity with so-
matosensory and motor cortex in schizophrenia (1-8) and in
individuals at clinical high risk for psychosis, in whom it pre-
dicts conversion to full-blown illness (9). Findings of decreased
sleep spindle activity in patients with schizophrenia and their
first-degree relatives also implicate abnormal thalamocortical
interactions [for reviews, see (10,11)]. Sleep spindles are a
defining electroencephalogram (EEG) oscillation of non-rapid
eye movement stage 2 sleep (N2) and depend on thalamo-
cortical circuitry for their expression (12-16). The goal of the
present study was to determine whether abnormally increased

thalamocortical functional connectivity correlated with sleep
spindle deficits in schizophrenia, which would be consistent
with  the hypothesis that they reflect a common
pathophysiology.

Sleep spindles are initiated in the thalamic reticular nucleus
(TRN) (17), a thin netlike structure around the thalamus that
receives collaterals from corticothalamic and thalamocortical
neurons. Sleep spindles depend on these thalamocortical
feedback loops for their propagation and synchronization
across the cortex (13,14,18,19). Sleep spindles facilitate the
synaptic plasticity involved in memory (20,21); correlate with
sleep-dependent memory consolidation, learning efficiency,
and IQ in a large body of basic research (22); and can be
manipulated to improve memory either pharmacologically
(23,24) or using transcranial stimulation (25-27) in healthy
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humans. Patients with schizophrenia show sleep spindle def-
icits (28-30) that are associated with impaired sleep-
dependent memory consolidation (31-33). Reduced spindle
activity that correlates with worse cognitive performance and
lower 1Q is also seen in early-course antipsychotic-naive pa-
tients with schizophrenia and young nonpsychotic first-degree
relatives. Collectively, this evidence suggests that reduced
spindle activity is an endophenotype of schizophrenia that
reflects the functional integrity of thalamocortical networks and
contributes to cognitive deficits (10,34,35).

We hypothesized that the abnormal thalamocortical in-
teractions that give rise to both hyperconnectivity and sleep
spindle deficits in schizophrenia reflect reduced TRN inhibition
of the thalamus. The TRN, which consists entirely of gamma-
aminobutyric acid neurons (36), is the major inhibitory nucleus
of the thalamus. Strategically positioned between thalamus and
cortex, it powerfully inhibits glutamatergic thalamocortical
neurons to gate the relay of information to cortex during wake
and to initiate spindles during sleep (15). Sleep spindle initiation
depends on powerful and prolonged inhibition of thalamo-
cortical neurons by the TRN (12,37), particularly sensory pro-
jecting neurons (38). This inhibition is followed by rebound
spike bursts in thalamocortical neurons that entrain cortical
neurons to oscillate at spindle frequency (13). Postmortem
studies provide evidence of TRN abnormalities in schizo-
phrenia, including a reduction of parvalbumin neurons (39-41),
which predominate in sensory relay nuclei (42). A consequent
impairment of TRN-mediated inhibition of thalamocortical
neurons in schizophrenia may increase the forwarding of sen-
sory and motor information to the cortex, resulting in thalamic
hyperconnectivity, and reduce the burst firing necessary for
sleep spindle initiation, resulting in spindle deficits.

METHODS AND MATERIALS

Participants

Participants were 26 outpatients with schizophrenia, recruited
from an urban mental health center, and 30 healthy control
subjects, recruited from the community through poster and
website advertisements. After exclusion for excessive motion
during scanning (see description below), 22 patients and 29
control subjects were retained for group comparisons of
functional connectivity. Group comparison of sleep spindle
density was based on 26 patients and 29 control subjects after
1 control subject was excluded owing to technical problems
with the sleep recording. Correlations of connectivity and
spindle density included 22 patients and 28 control subjects.
Patient and control groups did not differ in age, sex, handed-
ness, mean years of parental education, or estimated pre-
morbid verbal IQ (Table 1). Two patients were unmedicated,
and the rest had been maintained on stable doses of anti-
psychotic and adjunctive medications for at least 6 weeks
before enrollment (Supplemental Table S1). Diagnoses were
confirmed with Structured Clinical Interview for DSM-IV (43),
and symptoms were rated with the Positive and Negative
Syndrome Scale (44). Healthy participants were screened to
exclude individuals with a personal history of mental illness
(Structured Clinical Interview for DSM-IV-TR, nonpatient edi-
tion) (45) or a family history of either schizophrenia spectrum
disorder or psychosis.

Thalamocortical Connectivity and Sleep in Schizophrenia

Table 1. Participant Characteristics
Patients With

Healthy Control

Schizophrenia Subjects
(n=22) (n=29) tag p

Age, Years 31.7 =741 30.2 = 6.3 0.80 .43
Sex, Female/Male, n 517 8/21 xz =0.64 .75
Handedness® 80 + 24 65 = 54 116 .25
Mean Parental 143 =3 151 = 34 —-0.86 .40

Education, Years
Estimated Verbal IQ° 104 + 9.3 108 + 8.5 168 .10
Mean Residual 0.24 = 0.06 0.23 = 0.07 -0.39 .70

Motion®
PANSS Total 69 = 14.4 (Mild)

PANSS Positive 17 + 5.2 (Mild)

PANSS Negative 19 = 4.7 (Mild)

Mean * SD values and group comparisons of demographic data.

PANSS, Positive and Negative Syndrome Scale.

?Based on the modified Edinburgh Handedness Inventory (85,86).
Laterality scores of —100 or +100 denote exclusive use of left or
right hand, respectively.

PBased on standard scores on the reading subtest of the Wide
Range Achievement Test 3 (87).

°Root mean square of translation in x, y, and z directions averaged
across the 2 resting-state runs.

All participants were screened to exclude individuals
with a diagnosed sleep disorder, treatment with sleep medi-
cations, a history of significant head injury or neurological
disorder, a history of substance abuse or dependence within
the past 6 months (based on interview, chart review, clinician
report, and urine toxicological screening), and contraindica-
tions for MRI (e.g., metal in the body, pregnancy). All partici-
pants gave written informed consent. The study was approved
by the Partners Human Research Committee.

Procedures

Overview. Participants had 4 nights of polysomnography
(PSQG) in the Massachusetts General Hospital Clinical Research
Center as part of a double-blind, randomized, placebo-
controlled clinical trial that involved adding 3 mg of eszopi-
clone to ongoing medications for the 2 treatment nights.
Placebo and treatment visits were separated by 1 week and
took place on 2 consecutive weeknights, with the first night of
each visit serving as the baseline night and the second serving
as the learning night. For the present study, we measured
spindle activity during N2 on the baseline night of the placebo
visit. MRI scans were acquired approximately 1 week after
completion of the sleep visits.

Spindle Measurement and Analysis. PSG was acquired
at 400 Hz using an Aura LTM64 acquisition system (Grass
Technologies, Astro-Med Inc., Warwick, RI) and EasyCap EEG
caps (EasyCap GmbH, Herrsching, Germany) with 58 EEG, 2
submental electromyography, and 2 electro-oculography
channels. Each 30-second epoch of PSG was visually classi-
fied into stages (wake, N1, N2, N3, rapid eye movement sleep)
according to standard criteria (46) by raters blinded to visit,
group, and night. N2 EEG data were preprocessed and analyzed
using BrainVision Analyzer 2.0 (Brain Products GmbH, Gilching,
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Germany) and MATLAB R2014a (The MathWorks, Inc., Natick,
MA), filtered at 0.3 to 35 Hz and notch filtered at 60 Hz. Channels
displaying significant artifacts for more than 30 minutes of the
recording were interpolated with spherical splines. After refer-
encing to the average of all EEG channels, data were visually
inspected, and 30-second epochs with artifacts were removed.
Sleep spindles were automatically detected at 12 to 15 Hz at
each channel using a wavelet-based algorithm that was previ-
ously validated against hand-counted spindles in both patients
with schizophrenia and healthy individuals (32,47). The
threshold for spindle detection, 9 times the median signal
amplitude of artifact-free epochs, was chosen to maximize
between-class (spindle vs. nonspindle) variance (48) in samples
of patients with schizophrenia and control subjects from a
previous study (32). The outcome measure was spindle density
(spindles per minute) during N2 sleep.

Group comparisons of sleep spindle density were based on
t tests at each electrode. A nonparametric clustering method
optimized for EEG (49) and implemented in R (http://www.R-
project.org/) was used to correct for multiple comparisons.
Adjacent electrodes that met an uncorrected threshold of p =
.05 were clustered, and within each cluster the t values were
summed across electrodes. Cluster-level corrected p values
were determined by estimating the likelihood that a cluster of
that summed t value would be found by chance under the null
distribution derived from 10,000 permutations with random
group assignment.

MRI Acquisition. MRI scans were acquired with a 3T
Siemens Trio TIM whole-body high-speed scanner (Siemens
Healthcare, Erlangen, Germany) equipped for echo-planar im-
aging and a 32-channel head coil. Head stabilization was
achieved with cushioning, and participants wore earplugs to
attenuate noise. Autoalign was used for automatic slice
positioning (50). Anatomical images were acquired with a three-
dimensional multiecho magnetization prepared rapid acquisi-
tion gradient-echo sequence (T1-weighted) with echo-planar
imaging-based volumetric navigators for real-time motion
correction (repetition time = 2530 ms, flip angle = 7°, echo
times = 1.7 ms/3.6 ms/5.5 ms/7.3 ms, integrated parallel im-
aging techniques = 2, field of view = 256 mm, 176 in-plane
sagittal slices, voxel size = 1 mm? isotropic, scan duration =
6 minutes 12 seconds) (51). Two rs-fcMRI scans were obtained
with a gradient-echo T2*-weighted sequence for blood oxygen
level-dependent contrast (repetition time = 3000 ms, flip
angle = 85°, echo time = 30 ms, field of view = 216 mm, 47
contiguous horizontal slices parallel to the intercommissural
plane, voxel size = 3 mms, interleaved, scan duration = 6 mi-
nutes 12 seconds). rs-fcMRI sequences included prospective
acquisition correction for head motion to adjust slice position
and orientation during data acquisition (52). Participants were
instructed to keep their eyes open for the duration of the
resting-state scans.

MRI Preprocessing. rs-fcMRI data were preprocessed and
analyzed using SPM8 (Wellcome Department of Cognitive
Neurology, London, United Kingdom) implemented in MAT-
LAB. Anatomical images were segmented into white matter,
gray matter, and cerebrospinal fluid masks. Images were

corrected for the time of slice acquisition, spatially realigned
with respect to the reference image, resliced, and coregistered
with the anatomical images. The volumes were normalized to
the Montreal Neurological Institute template and spatially
smoothed using a Gaussian kernel with a full width at half
maximum of 6 mm.

MRI Data Quality. To minimize spurious correlations in
rs-fcMRI data and to avoid artifactual group differences owing
to head motion (53), we excluded data from 4 patients and 1
control subject based on high levels of residual motion—
greater than 2 SD above the sample mean (root mean square
of translation in x, y, and z directions averaged across the 2
runs). In the remaining participants, we identified and removed
artifactual volumes using Artifact Detection Tools (http://www.
nitrc.org/projects/artifact_detect/) based on whether head
displacement in the x, y, or z direction was more than 1 mm
from the previous frame or whether the global mean intensity
of the volume was more than 3 SD above that of the entire
functional scan. There were no group differences in residual
motion (t49 = 0.39, p = .70) or the number of artifactual volumes
(tao = 1.49, p = .14) in the final sample.

Functional Connectivity Analyses. Analyses were
implemented in CONN version 17 (54) using a component base
noise reduction method, Anatomical CompCor (55), rather than
global signal regression, to remove physiological and other
noise (56). Preprocessing involved applying a temporal band-
pass filter of 0.008 to 0.09 Hz to the time series. Residual head
motion parameters (rotation and translations in x, y, and z
directions and their first-order temporal derivatives) and arti-
factual volumes (flagged by Artifact Detection Tools) were
regressed out in the model. Functional connectivity maps were
generated for each participant by extracting the average time
course of the blood oxygen level-dependent signal from the
bilateral whole thalamus seed, which was defined using the
probabilistic FSL Oxford thalamic connectivity atlas with a
threshold of 25 (57,58) (Supplemental Figure S1), and corre-
lating it with every other gray matter voxel. The resulting
Pearson coefficients were transformed into Fisher’s z values.
This yielded a map for each resting-state run where the value
at each voxel indexed connectivity with the thalamus. The two
runs for each subject were averaged.

We examined group differences in thalamocortical functional
connectivity with t tests at every voxel. We examined the re-
lationships of sleep spindle density (averaged across electrodes)
with thalamocortical connectivity using regression with group,
spindle density, and group-by-spindle density interaction as
predictors. Whole-brain correction for multiple comparisons was
based on a voxel level uncorrected threshold of p = .001 and a
false discovery rate—corrected cluster threshold of p = .05.

RESULTS

Thalamocortical Hyperconnectivity in
Schizophrenia

As in prior studies, patients with schizophrenia exhibited
significantly increased resting-state functional connectivity of
the thalamus with bilateral motor and somatosensory cortex
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Figure 1. Group differences. (A) Statistical map of group differences in thalamocortical functional connectivity displayed on the cortical surface of the
template brain at peorrectea = -05. Greater connectivity in patients with schizophrenia (SZ) is depicted in blue. There were no regions of significantly greater
connectivity in healthy control subjects (HC). (B) Dot plot of averaged thalamocortical connectivity in the group difference mask. Black bars represent group
means. (C) Topographical map of group differences in sleep spindle density. Warm colors represent higher spindle density in HC. The electrodes circled in
white form a significant cluster. (D) Dot plot of averaged sleep spindle density in the cluster of electrodes with significantly reduced spindle density. Black bars

represent group means.

and with the left parahippocampal gyrus (Figure 1A, B and
Table 2). There were no regions of significantly reduced
thalamic functional connectivity in schizophrenia (see
Supplemental Figure S2 for unthresholded functional con-
nectivity statistical maps for each group).

Reduced Spindle Density in Schizophrenia

We also replicated findings of reduced sleep spindle density in
schizophrenia. High-density overnight PSG recordings
revealed globally reduced spindle density (number per minute)
during N2 sleep that reached significance in a large cluster (38
electrodes, peorrected = -009) (Figure 1C, D).

Spindle Density Correlates With Thalamocortical
Functional Connectivity

To test the hypothesis that both thalamocortical connectivity
and spindle density reflect the functional integrity of
TRN-mediated thalamocortical circuitry, we examined their

relationships. A regression model with factors for spindle
density (averaged across all electrodes), group, and their
interaction showed that lower spindle density was significantly
associated with greater thalamic connectivity in left motor and
somatosensory cortex and left superior temporal gyrus
(Figure 2A and Table 3). These relationships did not differ by
group (Figure 2B).

Exploratory and Control Analyses

Based on recent evidence that thalamic input regulates local
cortical functional connectivity (59), we questioned whether
abnormally increased thalamic input in schizophrenia would
disrupt local cortical interactions. To address this, we investi-
gated the relationship of thalamocortical connectivity with
intracortical connectivity in the regions that showed hyper-
connectivity in schizophrenia. We quantified intracortical con-
nectivity within the thalamocortical group difference mask by
computing the average connectivity of each voxel with the
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Table 2. Maxima and Locations of Clusters Showing
Significant Group Differences in Functional Connectivity
With the Thalamus

Table 3. Maxima and Locations of Clusters Showing
Significant Relationships of Thalamocortical Functional
Connectivity With Spindle Density

MNI Coordinates

MNI Coordinates

Region Voxels X y z BA  tss(max) Region Voxels X y z BA  tsg(max)
L Postcentral Gyrus 3624 -38 -20 46 2 -5.49 L Precentral Gyrus 181 -24 —16 64 4 —-4.21
L precentral gyrus -28 -20 70 4 L postcentral gyrus —-40 -19 64 3
L postcentral gyrus =37 -17 46 3 L Superior Temporal 169 -50 -10 -8 22 —4.88
L postcentral gyrus —51 -6 35 Gyrus
L cingulate gyrus —-10 -1 45 24 L middle temporal —56 -12 -8 21
L medial frontal gyrus -3 -18 -52 6 gyrus
L paracentral lobule 3 _7 6 31 L Postcentral Gyrus 143 -30 -32 54 3 -5.20
R Insula 1640 36 _34 2 13 554 Beportgd clusters have pcorrected = ,(_)5 _b_ased on c_o_rrection for_the
entire brain. No clusters showed a significant positive correlation.
R precentral gyrus 2 -2 31 Local maxima within the clusters (indented) are listed only if they fell
R precentral gyrus 36 -13 37 4 in a different Brodmann area (BA) than the global maximum.
R postcentral gyrus 36 —16 41 L, left; MNI, Montreal Neurological Institute.
R Precentral Gyrus 207 54 -2 4 6 -5.17
L Parahippocampal 194 —-20 —46 -8 19 —452 of sensory and motor information during wake, corresponding
Gyrus to stronger functional connectivity of the thalamus with sen-
L parahippocampal -23 -49 -8 37 sory and motor cortex, and to decreased sleep spindles. The
gyrus present findings link two biomarkers of schizophrenia—the

All reported clusters have peorrected = -05 based on correction for the
entire brain. There were no clusters where control subjects showed
significantly greater functional connectivity than patients. Local
maxima within the clusters (indented) are listed only if they fell in a
different Brodmann area (BA) than the global maximum.

L, left; MNI, Montreal Neurological Institute; R, right.

averaged connectivity of the entire mask. We then correlated
this measure of intracortical connectivity with the averaged
thalamocortical connectivity of the mask. Intracortical con-
nectivity within the group difference mask was significantly
weaker in patients than in control subjects (t;9 = 2.8, p = .007)
(Figure 3A), and only control subjects showed a strong recip-
rocal relationship of intracortical connectivity with thalamo-
cortical connectivity (r = —.75, p = 2 X 1075, patients: r = .19,
p = .41) (Figure 3B), a difference that was significant (§ = .84,
p=5x1079).

Several studies have examined correlations of thalamo-
cortical hyperconnectivity with symptoms in schizophrenia, but
the consistency and direction of these findings varies (60). In
the present study, thalamic connectivity did not correlate with
either positive or negative symptoms. In addition, hallucina-
tions did not correlate with the connectivity of the thalamus
with the superior temporal gyri, which are thought to be
involved in their generation (61). Antipsychotic dosage
measured in chlorpromazine equivalents (62) did not signifi-
cantly correlate with either sleep spindle density (r = —.30,
p = .17) or thalamocortical connectivity (r = —.22, p = .35).

DISCUSSION

We replicated previous findings of decreased spindle density
and thalamic hyperconnectivity in schizophrenia and found
that these two abnormalities were correlated. Both abnormal-
ities reflect thalamocortical circuit dysfunction, and their cor-
relation supports the hypothesis of a common underlying
pathophysiology. We propose that these abnormalities reflect
reduced inhibition of thalamocortical neurons by the TRN. This
would be expected to lead to increased and less filtered relay

spindle density deficit and abnormally increased thalamocort-
ical functional connectivity—and suggest deficient TRN inhi-
bition as a mechanism.

The relationships of thalamocortical connectivity with spin-
dle density were seen in both healthy control partcipants and
patients with schizophrenia, and the slopes of these relation-
ships were almost identical. Patients simply had lower spindle
density that corresponded to higher connectivity. These
findings support the hypothesis that both thalamocortical
connectivity and spindle density index functional variation in
TRN-mediated thalamocortical circuitry, which lies on a
continuum, with patients having less robust TRN-mediated
inhibition. This seemingly quantitative rather than qualitative
difference, along with previous findings of normal spindle
morphology in schizophrenia [e.g., (32)] may bode well for the
prospects of therapy to normalize circuit function, increase
spindles, and improve outcome. The relationship observed in
control participants, who were not taking medications, sug-
gests that medication is unlikely to be a confounding factor in
these correlations.

As in prior studies, thalamocortical hyperconnectivity was seen
primarily in motor and somatosensory cortex (1-6,9). This
selectivity may reflect the organization of thalamocortical circuitry,
which can be divided into core and matrix pathways (42).
Thalamocortical neurons of the matrix pathway exhibit immuno-
reactivity to the calcium-binding protein calbindin, are widespread
throughout the thalamus, and project diffusely to multiple cortical
regions. Core neurons, in contrast, react to parvalbumin; are
primarily found in sensory and motor nuclei; and have restricted,
topographically organized projections to sensory cortical regions.
The core pathway is thought to initiate focal spindles in sensory
and motor regions, which have been associated with memory
consolidation (63,64), whereas the matrix pathway is thought to
play a greater role in initiating widely distributed spindles and in
synchronizing spindles across the cortex (65,66). Thus,
thalamocortical hyperconnectivity in sensory regions and a
correlated reduction in spindle density in schizophrenia are most
consistent with abnormalities of the core pathway.
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Figure 2. Relationships of sleep spindle density with thalamocortical connectivity. (A) Group differences in thalamocortical connectivity (blue), regions
showing significant (Dcorected = -05) inverse correlations of average spindle density with thalamocortical connectivity (yellow) and their overlap (green) dis-
played on the cortical surface of the template brain. No regions showed significant positive correlations. (B) Thalamocortical connectivity in regions showing a
significant inverse correlation [yellow and green in panel (A)] is plotted against average spindle density. HC, healthy control subjects; SZ, patients with
schizophrenia.

Both spindle deficits and thalamocortical hyperconnectivity
may reflect abnormal TRN function. Postmortem studies give
evidence of TRN abnormalities in schizophrenia, including
decreased nicotinic receptor binding (39), increased expression
of excitatory amino acid transporters (40), and reduced parval-
bumin neurons and perineuronal nets (41). These abnormalities
may have a genetic origin. Risk genes for neurodevelopmental
disorders, both schizophrenia and autism, affect TRN function
and spindle expression, suggesting the possibility of a patho-
genic role (67-70). During gestation, axons that connect the

cortex and the thalamus pass through the TRN, which helps
guide them to their terminations (71). As early as the first post-
natal week in rodents, spindle bursts, a precursor to adult sleep
spindles that are similar in shape, frequency, and origin (72),
refine these reciprocal thalamocortical glutamatergic connec-
tions, particularly in somatosensory and motor cortex (73-76).
These findings suggest mechanisms by which risk genes that
affect the TRN early in neurodevelopment could disrupt the
establishment of thalamocortical circuitry and contribute to
vulnerability to schizophrenia and other neurodevelopmental
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Figure 3. Relationships of thalamocortical connectivity with cortical connectivity. (A) Dot plot of the averaged corticocortical connectivity in the regions that
show thalamocortical hyperconnectivity in schizophrenia. Black bars represent group means. (B) Thalamocortical connectivity is plotted against corticocortical
connectivity within the same mask. The slopes of the relationships differ significantly between groups. HC, healthy control subjects; SZ, patients with
schizophrenia.

Thalamocortical Connectivity
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disorders. While the neurodevelopmental literature strongly
links TRN-generated spindle bursts to thalamocortical con-
nectivity, we cannot exclude the possibility that a third factor
mediates their relationship.

Dysfunction of TRN-mediated thalamocortical circuitry may
contribute more broadly to the manifestations of schizo-
phrenia. In larger studies, thalamocortical hyperconnectivity
has been correlated with cognitive impairment, negative
symptoms, and positive symptoms, including hallucinations
(4,6,7). Abnormal perceptual experiences, which are also hy-
pothesized to underlie delusions (77), may arise from increased
and less filtered thalamic forwarding of sensory information to
the cortex. Sensory gating deficits, impaired attentional
filtering, and abnormal corollary discharge [i.e., reduced sup-
pression of sensations resulting from one’s own actions (2,78-
81)] could similarly be attributed to deficient TRN inhibition of
sensory relay. Reduced spindle activity also correlates with
positive symptoms and cognitive dysfunction in patients with
chronic schizophrenia taking medication, early-course anti-
psychotic-naive patients with schizophrenia (28-33), and
nonpsychotic first-degree relatives (34,35). In healthy young
individuals, reduced spindle density correlates with both
elevated proneness to psychosis and increased thalamic
glutamine/glutamate levels, supporting a mechanistic link be-
tween spindles, symptoms, and heightened thalamic excitation
(82). These findings are consistent with the hypothesis that
both thalamocortical hyperconnectivity and spindle deficits
reflect thalamocortical circuit dysfunction that may impair
cognition and contribute to symptoms (9,10).

Motivated by recent evidence that thalamic input, in addi-
tion to relaying information, regulates local cortical functional
connectivity to enhance information processing (59), we
examined whether regions with abnormally increased
thalamic input in schizophrenia would have disrupted local
cortical interactions. Whereas control subjects showed a
strong reciprocal relationship of thalamocortical connectivity
with intracortical connectivity in these regions, patients
showed no relationship and significantly reduced intracortical
connectivity. Primary sensory and motor areas preferentially
display local as opposed to long-range functional connec-
tivity, which is thought to optimize area-specific information
processing (83). The reduced intracortical connectivity in
motor and somatosensory cortex seen in patients as well as
lack of correlation with thalamocortical connectivity suggests
that the balance between thalamic and local communication
is disrupted. These are intriguing, but unexpected, findings
that require replication and functional correlation to under-
stand their significance.

Several limitations of the present study merit consideration.
First, the relatively modest sample sizes limited our statistical
power, and this may account for our failure to replicate previous
findings of reduced connectivity of the thalamus with prefrontal
cortex in schizophrenia seen in larger studies [for example, see
(4)]. Relatedly, to maximize power in our analyses, we used the
entire thalamus as a seed, which does not allow us to implicate
specific thalamic regions in aberrant connectivity. Second, we
used blood oxygen level-dependent functional MRI during
wakeful rest to make inferences about connectivity. The
strengths and weaknesses of this approach have been dis-
cussed elsewhere (84), and although fcMRI is not a direct

measure of connectivity, it provides information about interre-
gional communication. Although we found no correlations be-
tween antipsychotic dosage and our outcome variables, almost
all participants with schizophrenia were taking medications that
affect brain function. Sleep spindle deficits have also been re-
ported in antipsychotic-naive patients and first-degree relatives,
and thalamocortical hyperconnectivity is also present in clinical
high-risk individuals and is greater in individuals who eventually
convert to psychosis. These findings indicate that neither sleep
spindle deficits nor thalamocortical hyperconnectivity is a
consequence of medications or chronicity. Moreover, the rela-
tionship of spindles with thalamocortical connectivity is not
likely to be due to medications, as it was also seen in control
participants. That spindle and connectivity abnormalities are
also present in medicated patients suggests that they are not
corrected by current medication regimens for schizophrenia,
and to the degree that they impair function, treating them re-
mains an unmet need. Finally, we relied on indirect measures to
make inferences about TRN function. The TRN is challenging to
study directly in humans because its size and location make it
mostly inaccessible to neuroimaging.

By linking two biomarkers of schizophrenia, this work sug-
gests that they share a common mechanism and neuro-
developmental origin. If spindle deficits and thalamocortical
hyperconnectivity reflect a common TRN-mediated thalamo-
cortical pathophysiology that increases risk for schizophrenia
and contributes to its cognitive deficits and symptoms, un-
derstanding its mechanism could guide the development of
interventions targeting TRN dysfunction to treat schizophrenia
and possibly even prevent its onset.
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